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A METHOD OF DETERMINING MODAL DATA OF A NONUNIFORM BEAM 

WITH EFFECTS OF SHEAR DEFORMATION AND ROTARY INERTIA 

By Vernon L. Alley, Jr., Robert J. Guillotte, 
and Lessie D. Hunter 
Langley Research Center 

SUMMARY 

A recurrence solution including the secondary effects of rotary inertia 
and shear deformation on discontinuous nonuniform beamlike structures is pre- 
sented for obtaining highly descriptive free-free natural mode data. Results 
of other studies are included to ascertain the significance of the secondary 
influences on the classical uniform beam. Numerical results are also included 
for the application of the method to a first-stage and fourth-stage configura- 
tion of a typical space research launch vehicle. 
that shear deformation is generally the prime contributor of the secondary 
effects on typical launch vehicle configurations; the major influences of the 
secondary effects are seen in reductions in natural frequencies and in changes 
to the mode slopes, mode moments, and”mode shears. 

The numerical results indicate 

INTRODUCTION 

Natural vibration characteristics are frequently required for systems that 
can be appropriately represented as free-free beamlike structures. Such struc- 
tures are consistently encountered in the array of stages that comprise the 
typical launch vehicle for space research. 

An assessment of the natural vibration characteristics normally w i l l  
include the calculations of the fundamental frequencies of oscillation along 
with a number of overtones. The deflected curves associated with each char- 
acteristic frequency, known as either mode shapes, characteristic functions, or  
eigenfunctions, are also desired data. In addition, the slopes, moments, and 
sometimes the shears associated with the mode shape are provided. Special 
definite integrals also are frequently computed, for example, the generalized 
or effective mass of a mode. 

These data have a variety of uses. Their most familiar use is in providing 
knowledge of natural frequencies for designing in order to avoid states of 
resonant vibrations. This application is particularly important in designing 
or qualifying the spin program fo r  unguided launch vehicles. 
persion control is frequently accomplished by spinning a vehicle about its 
longitudinal axis.) 

(Trajectory dis- 

High dynamic stresses and even structural failures might 
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result if the r o l l  frequency is near or coincident for an appreciable time to 
one of the natural frequencies of the system. 

In addition, the vibration response levels of a vehicle will generally be 
high near the frequencies of the natural vibrations of the basic structure. 
Knowledge of the probable distribution of the disturbance spectrum can provide 
information for appropriate shock mounting of delicate payloads and can lead to 
a proper choice of the dynamic characteristics of instrumentation. 

Furthermore, calculated mode shapes and frequencies can be useful in 
interpreting measured vibration data. For example, moment and shear data asso- 
ciated with calculated modal responses are frequently used for rapid assessment 
of the load significance of recorded flight data. 

Probably the greatest value of modal data is realized in series solutions 
of the differential equations of motion of the system for which they have been 
generated. The well-known orthogonality properties of mode shapes, the fact 
that the modes satisfy the appropriate boundary conditions for their particular 
constraints, and the fact that the usual response of a beam system is adequately 
described by superposition of a few modes make them ideal functions for such 
applications, widely hown as modal form solutions. 

The modal form series solution is particularly adaptable to formulating 
techniques for yielding gust, wind loads, ignition and separation responses, 
and other transient loads. The modal form approach has also proven popular for 
developing the characteristic equation of structures coupled with closed-loop 
autopilot systems. Such analyses permit investigations of the stability bound- 
aries of such systems and lead to proper gain levels and filter characteristics 
to yield stable performances. 

Such valuable applications of modal data have stimulated analysts to 
develop a variety of analytical techniques to achieve increased accuracy and 
scope of output with a minimization of input effort. 
considerations of beam vibration are presented by Den Hartog in reference 1. 
The classical techniques of Rayleigh and Stodola are two of the methods dis- 
cussed in detail by Hartog. 
classical procedure attributed to Rayleigh and Ritz along with the Myklestad 
method. 
employing influence coefficients. This latter procedure has been formulated 
into a rigorous matrix solution and is presented by Alley and Gerringer in ref- 
erence 3 .  Houbolt and Anderson have organized the method of Stodola and pre- 
sented other useful related material in reference 4. An interesting integral 
series solution technique that is also an effective solution to the nonuniform 
beam vibration problem is presented by Spector in reference 5. 
are but a few of the publicized methods relating to natural vibrations of non- 
unif orm beams. 

Well-hown and fundamental 

In reference 2, Scanlan and Rosenbaum describe the 

They proceed to meticulously outline a step-by-step matrix method 

These references 

When the analyst is confronted with a particular assignment for computing 
modal data, the choice of the most suitable method should be made in view of the 
objectives of the assignment and the virtues and limitations that characterize 
the methods. Energy methods following the concepts of Rayleigh or the 
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Rayleigh-Ritz approach generally yield adequate results on frequencies but 
possess weaknesses in the exactness and descriptiveness of the mode shapes and 
their derivatives. The classical Myklestad method as well as the matrix method 
of reference 3 treat the system as a number of lumped point masses coupled with 
massless springs. These discrete mass models also yield adequate frequency 
data but suffer a loss in descriptiveness of the other modal data, particularly 
in the shear curves associated with the modes. The Stodola process, or one 
similar, requires iteration to converge on both frequency and mode shape. 
Whereas the frequency is readily obtained to a desired accuracy, the mode shape 
is not so readily made everywhere convergent to a prescribed accuracy. In addi- 
tion, the procedure requires sweeping techniques to obtain modes of higher fre- 
quencies than the fundamental. This operation frequently presents practical 
problems due to degeneration in numerical accuracy. 
although capable of yielding both the fundamental and higher modes, presents a 
formidable computing problem, the maintenance of sufficient accuracy in per- 
forming numerically the required multi-integrations. In the original or classi- 
cal form, all of the aforementioned methods omit the secondary influences of 
rotary inertia and shear deformation. Many extensions to the classical forms 
have been made throughout industry and government, yet few satisfactory methods 
incorporating the secondary influences have been adequately described in gen- 
erally available literature. Shear deformation introduces an additional source 
of deflection to the customary flexural deformation considered in elementary 
beam theory. Cross-section rotary inertia provides additional dynamic loading 
to the system due to the rotational acceleration of the cross section of the 
beam. In most slender beams the shear and rotary inertia contributions to 
loading and deflection are small in comparison with those resulting directly 
from bending. In multistage launch vehicles of conventional fabrication the 
shear deformation is secondary to bending and the structure is generally so 
slender that rotary inertia may also be ignored. 

The integral series method, 

However, the use of fiber-glass stages has given unexpected emphasis to 
the importance of shear. The low ratio of shear modulus to the flexural modulus 
of elasticity of fiber glass increases the relative contribution of shear defor- 
mation to bending and thus produces significant shear effects in geometries 
that otherwise could be investigated adequately without considering secondary 
effects. 

In addition, when .computing the modal data of beam systems with low length- 
to-diameter ratios such as characterized by the upper stages of conventional 
multistage launch vehicles, the inclusion of both shear deformation and rotary 
inertia has been found to be important to data accuracies. 

This paper presents another technique for computing modal data on nonuni- 
The method has proven very satisfactory for accurately describing form beams. 

not only the mode shape, but its slope, mode moments, and mode shears. The 
method is inherently applicable to structures exhibiting numerous discontinu- 
ities in their mass and stiffness properties and requires no discreting to an 
analogous lumped mass system. The differential equations of motion of the beam 
system are dealt with directly. Modes need not be computed consecutively as is 
required by a number of other methods. The technique has been employed suc- 
cessfully in obtaining accurate modal data up to the tenth mode on complex 
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structures. 
influences of rotary inertia and shear deformation. 

Furthermore, the formulation accurately incorporates the secondary 

The organization of the problem in the matrix form that follows has proven 
to be highly practical in obtaining numerical solutions on a high-speed digital 
computer. 
of the method has been found to be highly stable and accurate. 

Also, the numerical integration technique that i s  an integral part 

The detailed mathematical developments of the method are presented with 
information pertinent to practical numerical solutions utilizing the digital 
computer. 
secondary influences. 
four-stage launch vehicle is submitted with a study of the importance of see- 
ondary influences on the upper stage. 

Some data are supplied for assessing the probable importance of the 
An example of the application of the method to a typical 

SYMBOLS 

A 

"A" 

A1 

A 2  

a 

C1 

c2 

D 

D1 

D2 

2 cross-sectional area in shear, in. 

solution for superposition method 

value of Jr' at xz due to a unit value of Jr at xa, in.-' 

value of V at xz due to a unit value of \Ir at Xa, lb/rad 

coefficient (eqs. (3O)), %+lu?, lb-rad2/in.2 

solution for superposition method 

2 value of I)' at x2 due to a unit value of ( at Xa, rad/in. 

value of V at xi due to a unit value of f at Xa, lb/in. 

coefficient (eqs. ( 3 0 ) ) ,  Zn+lu?, lb-rad2/in.2 

value of 5 at xz due to a unit value of Jr at xa, in./rad 

value of If at x2 due to a unit value of Jr at xa, unitless 

maximum diameter of beam, in.; also used as determinant (eq. ( 3 2 ) )  

value of f at x2 due to a unit value of ( at xa, unitless 

value of Jr at XI due to a unit value of f at xa, rad/in. 
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d 

E 

e 

f(4 
G 

I 

K 

kr 

k 

L 

M 

m 

m r  

X 

*a 

Z 

shear deformation coeff ic ient  (eqs. ( 3 0 )  ), 

modulus of e l a s t i c i t y  i n  bending, lb/in.2 

m, l b - l  

f l e x i b i l i t y  coefficient (eqs. (3O)), - lb’1-in.-2 EI’ 

frequency equation (eq. (37) ) 

modulus of shear, lb/ in  . 
area moment of i n e r t i a  f o r  a given cross section, in .4  

coeff ic ient  fo r  cross section i n  shear 

effect ive spring constant of t he  r t h  mode; lb/ in .  when mode 
shapes a re  considered dimensionless 

half  increment (eqs. ( 3 O ) ) ,  Ax/2, in .  

overal l  length of beam, i n .  

mode moment due t o  bending, in- lb  

m a s s  per inch of length, lb-sec2/in.2 

effect ive m a s s  of the r t h  mode; lb-sec2/in. when mode shapes 
are considered dimensionless 

matrix i n  recurrence solution of equation (27) 

point i n  derivation 

t i m e ,  sec 

mode shear due t o  bending, lb/ in .  

column matrix of variables (see eq. (10))  

coordinate along length of vehicle, i n .  

value of a t  extreme l e f t  end of beam (lower boundary), i n .  x 

value of x a t  extreme r igh t  end of beam (upper boundary), i n .  

increment i n  recurrence solution, xn+l - Xn, in .  

rotary ine r t i a ,  lb-sec2 



P matrix (see eq. (10)) 

61 matrix (see eq. ( 1 9 ) )  

62 matrix (see eq. (20)) 

f deflection, i n .  

A matrix (see eq. (21))  

h approximation of second derivative of variable (see eqs. (12) 
t o  (15) and (21)) 

\Ir cross-sectional rotat ion due t o  bending, rad 

CD c i rcu lar  frequency, rad/sec 

hu increment of (u i n  t r i a l  solutions 

Subscripts: 

A "A" solution 

a 

B 

lower boundary 

"B" solution 

z upper boundary 

n 

r 

body s ta t ion  

mode 

Matrix notations: 

column matrix 

square or rectangular matrix 

inverse matrix 

uni t  matrix ill 
Primed symbols denote d i f fe ren t ia t ion  with respect t o  x .  
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DERIVATION OF THE METHOD 

A derivation i s  presented f o r  the  d i f f e r e n t i a l  equation of an osc i l l a t ing  
beam structure expressed a s  a set of four f i r s t -order  d i f f e r e n t i a l  equations. 
A recurrence formula i s  established which r e l a t e s  the system variables (mode 
shapes, mode slopes, mode moments, and shears, and t h e i r  der ivat ives)  a t  one 
s t a t ion  of the beam t o  those a t  an adjoining s ta t ion .  Boundary equations a re  
established for  the free-free system and a charac te r i s t ic  equation i s  obtained 
f o r  computing the  c r i t i c a l  frequencies of the system. Treatment of discontinu- 
i t i e s  i s  considered i n  de t a i l ,  and the orthogonality and equilibrium re la t ions  
a re  established. 

Equations of Motion 

A sketch i s  presented which shows the equations of motion. 

+ 

1 av 
v + - d x  

fi 
ax2 

dx 

dX 

Unstrained axis  
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Consider t he  d i f f e r e n t i a l  element of a beam of dx length i n  the sketch, 
then the  summation of the  v e r t i c a l  forces on the element will yie ld  

a25 av 
at2 ax 

m - d x + - d x = O  

Summing moments about p and dropping second-order terms gives 

d x = o  v d x + z - d x - -  a2* aM 
at2 ax 

From elementary beam theory, it i s  known t h a t  

V = -KAG(Z - .) 
a$ M = E I -  
dX 

( 3 )  

(4) 

where $ i s  the cross-section ro ta t ion  due t o  bending which d i f f e r s  from 
&(/ax because of shear deformation. 

Also, i f - i n t e r e s t  i s  confined t o  the undamped r t h  natural  mode, solutions 
of {, 9, V, and M a r e  assumed t o  have the  form 

where % 
mode. 

i s  the  angular frequency of undamped harmonic motion i n  the r t h  

It should also be noted t h a t  KAG and E1 are  functions of x only; 
the re f  ore 

a(KAG) - - d(KAG) 
ax dx 

a 



a ( E I 1  = d(E1) 
ax dx 

Subst i tut ing equations ( 5 )  i n  equations (1) t o  (4) and performing the indi- 
cated d i f fe ren t ia t ions  gives the  basic form of the  d i f f e r e n t i a l  equations f o r  
the  na tura l  vibration of a beam, consideration being given t o  flexure,  shear 
deformation, and rotary i n e r t i a .  Henceforth the subscripts will be dropped fo r  
purposes of c l a r i t y ,  and t h e  equations will appear a s  

dV 
dx 

-I& + - = 0 

Expressed i n  matrix notation, equations (6) t o  ( 9 )  appear a s  

0 -mo2 0 0 1 0  0 0  

0 0 o - Z w 2 0  1 - 1  0 

0 0  1 -1 0 - 
KAG 

1 0 0 

1 
O E T  

0 0 -1 0 0 0  
- 

V' 1 MI 

= o  

where the  primes denote d i f fe ren t ia t ion  with respect t o  x. 

If the  4 X 8 matrix i n  equation (10) i s  denoted a s  p ,  and the  8 X 1 
column matrix of unknowns a s  X ,  then equation (10) may be writ ten a s  

The matrix equation (eq. (11)) cons t i tu tes  the equations of motion of the 
system. 
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Recurrence Solution 

The following relat ionships  a re  introduced and are  based on the  assumption 
t h a t  the  first derivatives of the system variables  a re  l i nea r  over the  small 
increment xn t o  xn+l. Let (xn+l - xn) = Ax. 

> 

1 

dx 

Mn+1 = 

A t  t h i s  point An(c), An($), 

- % AX + Mn + 
dx 2 

e t  cetera,  a re  t o  be regarded as  undetermined. 

10 



Equations (12) t o  (13) may be writ ten i n  matrix notation: 

- 
0 

0 

0 

0 

0 

0 

Ax 

0x2 - 
2 

4 

)c 

Ax 

Ax2 - 
2 

0 

0 

0 

0 

0 

0 

- 

0 0 0 0 0 0 0 0 

1 

0 

0 0 

0 

0 

0 

0 

0 

0 

0 

0 0 

0 1 Ax 

0 

0 

Ax 

0 

1 

0 

0 

1 

0 

0 

0 

0 

0 

Ax 0 

0 

0 

0 

0 

0 

0 

Ax 

0 

1 

0 

0 

1 

0 

0 0 

0 0 0 0 0 Ax 0 0 

Let 
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0 

0 

1 

Ax 

0 

0 

0 

0 

0 

0 

0 

0 

1 

Ax 

0 

0 

0 

0 

0 

0 

0 

0 

1 

Ax 



0 0 

0 

0 

0 

0 

0 

1 

ax 
2 - 

0 

1 

Ax 
2 
- 

0 

0 

0 

0 

0 

0 

0 

0 

1 

ax 
2 

0 

0 

and 

(..> = 

Then, from the  relationships (17) t o  (21), equation (16) becomes 

The system variables m u s t  now satisf'y the equations of motion a t  any specified 
s ta t ion .  That i s ,  when x = xn+l, 
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by v i r tue  of the  constraint  imposed through the  following determination of the 
A matrix. Subst i tut ing equation (22) i n  equation ( 2 3 )  gives 

r -  

kn+1 .. 

Solving equation (24) for 
L 

An yields  

Thus, the variables 
t ions  (12) t o  (15) a r e  defined by requiring sa t i s fac t ion  of equation ( 2 3 ) .  
Substi tuting equation ( 2 5 )  i n t o  equation (22) gives the recurrence formula f o r  
the functions 5 ,  9 ,  V, and M: 

A( ( ) , A($), e t  cetera which were undetermined i n  equa- 

It i s  expedient t o  perform the matrix manipulations t o  express equa- 
t i on  (26) i n  the form 

where 

kl - PI 
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From equations (lo), (ll), and ( 2 0 )  it can be seen that 

0 

--1 

For convenience, let 

e = E I - ~  n+l  

2 

Then, equation ( 2 9 )  may be expressed as 

p a k  0 

1 

0 

1 

k 

ak 

0 

- 
0 

-1 

0 

ek 

The determinant D of this matrix is given by the formula 

D = -aek4 + 



By u t i l i z i n g  equations (lo), (11) , (l9), (20), and ( 3 0 )  and by performing 
the  matrix operations indicated i n  equation (26),  t he  elements of the matrix 
Pn+1 ' 9 which appears i n  equation (27), may be reduced t o  the exp l i c i t  algebraic 
expressions given i n  equation (33). 
s t ruc tu ra l  properties a t  Xn and G + ~ ,  of the  in t e rva l  length Ax, and of t he  
unknown-frequency CD. Equations (32) and (33) provide the working relat ionships  
for  p rac t i ca l  use of the recurrence formula given by equation (27) .  

The elements a re  functions only of the  

[..+1] = 

k(l+bekZ) l + b e P  

..d aek2 

aek4 a d  

a( l+b&)k e.( l+be$) 

a(l+beP)li2 e(l+be$)k 

ak2 ak 

a d  a P  

E$(l-bd)-d k F$(l-bd)-d 

kk2( l-bd)-d P E$( l -bd) -d  k 

e P  ek 

e k3 .P 

a$Lk*(l-bd)-d akL$(l-bd)-i! 

k( l+bek2) l+beK? 

k 1 

k2 k 

( 3 3 )  

Boundary Conditions 

I n  the work tha t  follows, the  solution w i l l  be r e s t r i c t ed  t o  considera- 
t ions  of the free-free vibration behavior. 
t o  the in- f l igh t  charac te r i s t ics  of launch vehicles. 
s c r ip t s  a and 2 indicate t h a t  the  associated quantity i s  evaluated a t  the  
lower boundary x = x, or  a t  the upper boundary x = xz, respectively. The 
boundary conditions a t  both ends of a f ree-free beam require tha t  

Condition ( a )  : 

This mode of behavior i s  appropriate 
Henceforth, the sub- 

Condition (b) : 

16 



Substi tuting condition (a)  i n  equation (8) shows that 

Condition ( c )  : 

= *a 

Condition (d)  : 

t-;- = Jr, 

Substi tuting condition (a) i n  equation (7)  gives 

Condition (e)  : 

M: = -Za(u2qa 

Condition ( f )  : 

M! = - Z z d $ f z  

Substi tuting condition (b)  i n  equation ( 9 )  yields  

Condition (g)  : 

qa I = q; = 0 

Solving equation (6)  for dV/dx gives 

Condition (h )  : 

v i  = mast ,  

Condition (i) : 

These conditions may now be expressed i n  matrix form. For the  lower 
boundary conditions it follows t h a t  



and fo r  the  upper boundary conditions 

Calculation of 

1 

0 

0 

1 

0 

0 

- Z a 2  

0 

1 

0 

0 

1 

0 

0 

-z 

0 

0 

1 

0 

0 

mad 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

F r  equenc i e s 

(34) 

( 3 5 )  

Suppose now t h a t  a number of s ta t ions  have been established a t  def in i te  
points xn along the span of the beam. The system variables a t  a l l  s ta t ions  
a re  then uniquely determined i f  values a re  assigned t o  ca,  $a, and LU. 
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Equation (34) determines the  system variables a t  
the  system variables a t  x = xn i n  terms of the  values a t  x = xa. Once the  
variables a t  x = xa 
variables a t  x = x ~ + ~ ,  and t h i s  process may be continued u n t i l  the  system 
variables a t  a l l  s ta t ions  a re  known. 
of the  system" f o r  the  given values of C a ,  Jra, and CD. The pr inciple  of 
superposition of solutions i s  employed by using an a rb i t ra ry  value of 
two separate solutions. The f i rs t  solution has Sa = 1, Jra = 0 and i s  cal led 
the  "A" solution; the  second has Sa = 0, 
t ion.  
t ions,  it can be concluded t h a t  

x = X a .  Equation (27) yields  

are known, equation (27) may be used again t o  compute the  

This process w i l l  be termed "a solution 

w i n  

Jra = 1 and i s  cal led the  "B" solu- 
Then by using conditions (a )  and (g)  of t he  section on boundary condi- 

The subscripts A and B designate the  separate solutions fo r  the  afore- 
mentioned boundary constraints.  The coeff ic ients  A1, A2, B1, and B2 a re  
essent ia l ly  influence coeff ic ients  where A 1  and A2 are t h e  values of Jr' 
and V, respectively, a t  xz due t o  a un i t  value of $ a t  xa. The values 
of and V, respectively, a t  xz 'due t o  a un i t  value of C a t  X a  a re  
termed B1 and B2. 

Nontrivial solutions of equation (36) ex is t  i f ,  and only i f ,  the  determi- 
nant of the  square matrix i s  zero. The natural  frequencies a re  therefore deter- 
mined by the  equation 

hereinafter referred t o  as the  frequency equation 
equation (37) a re  frequency dependent as  i s  evident from inspection of the  
Pn+l 
ency permits t he  sa t i s fac t ion  of equation (37) and yields  the  natural  frequen- 
c ies  of the  system. 
following additional relationships can be stated: 

f ( w ) .  The coeff ic ients  of 

This frequency depend- 

A l s o ,  from superposition of the  "A" and "B" solutions,  t he  

matrix defined by equations ( 3 O ) ,  (32), and (33). 
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where C 1 ,  C2, D1 ,  and D2 are influence coeff ic ients  for c 2  and 4r2. 

From the  second row of equation (36 )  

From the  f i rs t  row of equation (38 )  

Solving equation (41) f o r  Sa and subst i tut ing equation ( 4 0 )  for $a 
gives 

and normalizing i n  terms of S 2  = 1 yields  

Substi tuting equation (42) i n  equation (40)  yields  

It i s  reminded t h a t  t he  appropriate values of A l ,  A2, B1, B2, C1, 

C2, D1, and D2 are  only those associated with "A" and "B" solutions 
sat isfying equation (37). The numerical procedure i n  obtaining va l id  solutions 
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is to perform trial solutions for assumed values of u) until equation (37) is 
satisfied. 
natural mode of vibration. Succeeding higher frequencies, which satisf'y equa- 
tion (37), yield the progression of overtones or  higher modes. 

The lowest frequency satisfying the equation yields the fundamental 

Mode Shapes and Related Data 

The coefficients A1 to D2 associated with the proper values of w 
which satisfy equation (37), when substituted into equations (42) and (43), 
yield appropriate initial values of Sa and for the mode shapes. The 
recurrence formula of equation (27) relates the modal characteristics at a given 
station to an adjacent station. Thus, having the initial values leads to a 
complete solution for all stations. Such a solution yields the mode shapes, 
cross-section rotations, mode moments, mode shears, and the first derivatives 
with respect to x of each function. 

It should be noted that in letting c z  equal unity in obtaining equa- 
tions (42) and (43), the system variables derived from use of the two relation- 
ships are henceforth compatible with the mode shape normalized at 
(i.e., 
understood, that the form of the system variables, when 

x = xz 
( 1  = 1). For purposes of preventing conflicts in units, it should be 

c z  = 1, is in essence 

(.>- {$ (44) 

That is, (, $, V, and M from a final solution are actually the ratios 
(n/(z, $n/('z, Vn/{z, and M,.J(z, respectively. These ratios are the system 
variables per unit of mode deflection at x = XZ. 

Treatment of Discontinuities 

In most practical problems associated with nonuniform beams, EI, KAG, 
Z, and m exhibit many discontinuities over the range xa 5 x 5 xz. Conse- 
quently, provisions must be made for a convenient solution across discontinu- 
ities. When a discontinuity is crossed, the system variables have to be 
reevaluated . 

From physical consideration $, (, M, and V are continuous, and it 
will be shown that J r ' ,  (', M', and V' are discontinuous. 

Let the subscripts ( - )  and (+) denote values of system variables at a 
discontinuity which is approached through values of x lower than or higher 
than, respectively, the value of x at the discontinuity. 
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Then from equation ( 9 )  where M(-) = M(+) 

From equation (8) where V ( - )  = V(+) and $(-I = $(+I 

and from equation (7) 

From equation (6) with I: - 
( -1  - ( ( + I  

The relationship across a discontinuity may then be 

{X(+$ = 

0 

1 

0 

0 

"(+F 
0 

0 

0 

1 

0 

0 

1 

0 

0 

-Z( +)$ 

0 

0 
1 

0 -  
KAG(+> 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 1 0 

0 1 0 

0 0 0 

(48) 

shown in matrix form 

0 

0 

1 - 
ET(+ 

0 

0 

0 

0 

1 
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This re la t ionship i s  exactly s a t i s f i e d  when Ax = 0 i s  entered i n t o  Pn+l 
of equation ( 3 3 ) .  This contributes t o  the  efficiency of the  method f o r  use i n  
conjunction with high-speed d i g i t a l  computers because the same recurrence for -  
mulas a re  used t o  r e l a t e  system variables across a discontinuity a s  a re  used t o  
r e l a t e  variables across a f i n i t e  in te rva l .  

Orthogonality Condition 

One of the  major uses of na tura l  mode data i s  i n  modal form ser ies  solu- 
t ions .  Their p rac t i ca l  applications i n  se r i e s  solutions i s  a r e su l t  of the  
many simplifications t h a t  r e s u l t  from t h e i r  orthogonality relationships.  
re la t ionships  f o r  modal solutions,  r e s t r i c t e d  t o  elementary beam theory, a r e  
w e l l  known and widely referenced i n  reports  and standard t e x t s  on elementary 
vibrations.  The addition of rotary i n e r t i a  and shear deformation a l t e r s  the  
conventional re la t ionship and a c lear  descriptlon of the  orthogonality re la -  
t ionship fo r  nonuniform free-free beams with secondary e f f ec t s  i s  considered 
e s sen t i a l  t o  the  completeness of t h i s  paper. 
the  orthogonality re la t ionships  f o r  the  uniform free-free beam with shear 
deformation and rotary i n e r t i a .  I n  the  following discussion, the conditions 
f o r  the nonuniform free-free beam will be s e t  for th .  

These 

In  reference 6, Leonard derives 

Substi tuting equation (8) i n t o  equation (6)  and adding subscripts t o  5 
and Jr t o  designate the specif ic  mode r yields  

A l s o ,  subst i tut ing equations (8) and (9) i n  equation (7)  gives 

KAG j,r - - - ~ 2 ~ r ~  - ( 2) 
Multiplying equation ( 5 0 )  by Cn and (51) by Jrn, adding both r e su l t s  

together,  and integrat ing over the length of the  beam, y ie lds  
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Since the  r and n subscripts have been selected a r b i t r a r i l y ,  equa- 
t i o n  (52) i s  equally va l id  when expressed by reversing r and n. Making 
t h i s  reversal  y ie lds  

Expanding equations (52) and ( 5 3 )  by integrat ing,  by par t s ,  the f i r s t  and 
second terms on the right-hand side of the  equations and then subtracting the 
extended version of ( 5 3 )  from the extended form of (52) will yie ld  

For the free-free boundary conditions 

With these relationships,  equation (54) leads t o  the  f i n a l  conclusion tha t  
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and when cy, 6 u+, it i s  necessary tha t  

When q = y., it i s  usual t o  define the  preceding in tegra l  a s  the effec- 
t i v e  mass of the  mode. 

To avoid confusion and t o  obtain the effect ive mass i n  terms of m a s s  un i t s  
(lb-sec2/in.), it i s  necessary only t o  in te rpre t  the  symbols Sr  and $rr as  
applicable t o  the dimensionless mode. 

Now, instead of subtracting a s  w a s  done t o  obtain equation (54) ,  the  equa- 
n # r, t ions a re  added; then with the  additional resu l t s  of equation ( 5 7 )  when 

it i s  found tha t  

Y- I-- dx dx - ---Idx 

and when n = r, it i s  usual t o  define the preceding in t eg ra l  as  the effect ive 
spring constant of the  mode: 

where the  same statement regarding uni t s  f o r  equation (58) applies.  

Equations (57) and (59) are the  orthogonality properties of the free-free 
beam of variable mass and s t i f fnes s  with shear deformation and rotary ine r t i a .  

Equations (58) and (60) are useful  relationships defining the effect ive 
m a s s  and effect ive spring of the r t h  mode referenced a t  t he  normalizing point 
of the mode shape c r  = 1. 
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Equilibrium Relationships 

I n  addition t o  the  usefyl  orthogonality relationships,  two other valuable 
in tegra ls  associated with the  equilibrium of the  mode are frequently encdun- 
tered.  For the  free-free system t o  possess dynamic equilibrium while under- 
going natural  vibrations,  the following relationships prevail :  

sxz X a  m5r dx = O 

SOME ASPECTS OF APPLICATIONS 

Basic relationships f o r  the recurrence solution of the  beam vibration 

Orthogonality and equilibrium 
problem are  given i n  equations ( 2 7 ) ,  ( 3 O ) ,  ( 3 2 ) ,  and ( 3 3 ) .  
quencies a re  obtainable from equation ( 3 7 ) .  
relationships a re  given i n  equations ( 5 7 ) ,  (59),  (61),  and (62).  

The natural  fre- 

Descriptiveness of Output Data 

The type of solution set fo r th  by the  foregoing equations i s  inherently 
adaptable t o  producing highly descriptive modal data. 
equation (49) t h a t  $ I ,  { I ,  MI, and V '  are discontinuous functions by v i r -  
tue  of discont inui t ies  i n  E I ,  KAG, Z, and m. The quant i t ies  obtained by 
the  solution are of equal descriptiveness t o  tha t  of the input data; t ha t  is, 
f o r  every discontinuity i n  input data ( E I ,  KAG, m)  there  w i l l  r e su l t  
an associated discontinuity i n  the output functions. The qual i ty  of these data 
cannot be equaled by the  discrete  mass methods of analysis such as  t h a t  of re f -  
erence 3 .  The method i s  a l so  inherently sui table  fo r  automatic d ig i t a l -  
p lo t t ing  routines since the  input can be supplied or generated by interpolation 
t o  a def ini t ion as f i n e  as  desired t o  give an acceptable p lo t  of output. 

It has been shown by 

Z, and 

Numerical Solutions 

The successful use of the  foregoing formulation i s  largely dependent on 
the  de t a i l s  of the  computer program. Several important features t o  be observed 
are  set for th  i n  the  following t ex t .  

Machine t i m e . -  Improper programing can r e su l t  i n  lengthy computing t i m e s  
yielding unreasonably cost ly  data. Conversely, proper programing f o r  minimum 
computer t i m e  can be most rewarding with the  subject formulation. For example, 
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programing the  inverted and extended form of equation (28) given by equa- 
t ions  ( 3 2 )  and ( 3 3 )  reduced the  machine time t o  one-fourth tha t  required by a 
program performing in te rna l ly  the  operations of equation (28). 
accuracy requirements i n  detemining the  natural  frequencies by equation (37') 
can a l so  r e su l t  i n  exorbitant machine t i m e .  Extensive use of the  method of 
t h i s  paper has indicated t h a t  three modes with frequency convergence t o  0.1 per- 
cent e r ror  can be achieved with around 300 s ta t ions  of input data t o  an I B M  7094 
electronic data processing system i n  about 5 minutes. 
t h i s  accuracy on frequency i s  va l id  f o r  the  mathematical model but it i s  not 
indicative of t he  accuracy of predicting the  frequencies of the ac tua l  struc- 
ture. The accuracy i s  obviously dependent on the  appropriateness of t he  math 
model. 

Unduly s t r ingent  

It should be noted t h a t  

Attempting t o  sa t i s fy  upper boundary conditions t o  unneccessary accuracies 
can a l so  be costly. For example, $;, V2, and M2 are  zero f o r  the  free-free 

boundary case. 
puters. 
f rac t ion  of 1 percent of the  peak absolute values of t h e i r  respective functions 
over the t o t a l  span 
the  f i f t h  s ignif icant  f igure of the  maximum value of a function can readi ly  be 
obtained. 

These absolute conditions cannot be achieved by d i g i t a l  com- 
The analyst, however, should accept f i n i t e  boundary values t h a t  are a 

Xa 5 x 5 xz .  Boundary values which are  zero correct t o  

Near zero s t i f fness . -  I n  applying the recurrence technique of t h i s  report  
the unwary analyst can be confused and misled by using inputs of KAG and E 1  
t h a t  are near zero a t  or near the  upper boundary posit ion.  
encountered par t icu lar ly  with pointed nose cones or other similar s t ructures  
t h a t  essent ia l ly  taper  t o  zero. 
variation of the  mode shape i n  the area approaching the  upper boundary of the  
span. This variation i s  a combined r e su l t  of near zero s t i f fnes s  of KAG 
and/or E 1  
zero boundary condition. This condition i s  readi ly  corrected by avoiding, near 
the  f r ee  ends, KAG and E 1  input values of l e s s  than 0.0001 of t h e i r  respec- 
t i v e  average values over t he  t o t a l  span. 

This condition i s  

The problem manifests i tsel f  i n  a rad ica l  

and the  failure t o  achieve numerically the  absolute theore t ica l  

S-uperposition f o r  f i n a l  modes.- The sequential  nature of a solution by 
the  method proposed i n  t h i s  paper i s  as  follows: F i r s t ,  obtain f o r  a var ie ty  
of frequencies the influence coeff ic ients  Ai, A2, B1, and B2 by the  "A" 
and "B" solutions discussed i n  "Calculation of Frequencies ." From t h i s  t r i a l  
technique, a frequency i s  discerned t o  a desirable accuracy that w i l l  s a t i s f y  
the frequency equation (eq. (37) ) .  
t he  influence coefficients associated with the  c r i t i c a l  frequency are substi-  
tu ted  in to  equations (42) and (43) t o  obtain the  boundary values 5, and $a 
associated with the  normalized natural  mode. Finally,  with the  lmowledge of 
w, Sa,  and qa, a l l  i n i t i a l  conditions and coeff ic ients  can be f u l l y  ascer- 
tained, and the recurrence solution of equation (27) can be extended over the  
t o t a l  span. This solution y ie lds  data on a l l  of the  system variables for  a l l  
desired s ta t ions.  
should be noted. Entering C a  and $a simultaneously i n t o  equation (27) i n  
the  f i n a l  solution f o r  the  modal character is t ics  i s  a different  d i g i t a l  opera- 
t i o n  than the  or ig ina l  procedure of superposition t h a t  led  t o  knowledge of (a 

Second, a f t e r  obtaining a natural  frequency, 

An important feature associated with t h i s  l a s t  operation 
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and $a. 
i t a l  round-off e r rors  t ha t  w i l l  reduce the accuracy of the  f i n a l  boundary 
values below t h a t  previously established by superposition. 
ber of s ignif icant  figures are essent ia l  t o  t h e  mechanism of the numerical 
solution, a duplicate procedure f o r  t he  i n i t i a l  operation i s  recommended i n  
obtaining the  f i n a l  modal data. The available values of 5 ,  and $a should 
be used i n  independent "A" and "B" solutions and should be combined a t  corre- 
sponding x s ta t ions  t o  obtain the  desired f i n a l  modal data. 

Consequently, a simultaneous solution will r e su l t  i n  different  dig- 

Since a large num- 

Integration intervals . -  The fundamental d i f f e ren t i a l  equations of motion 
given by equation (10) a re  a l l  of f i rs t  order. 
variables with the  assumption of l i nea r  var ia t ions of the  f i rs t  derivatives as 
defined by equations (12) t o  (15). 
Ax in te rva l  must  a t  a l l  s ta t ions  be suitably small. Studies on in t e rva l  s izes  
have shown t h a t  adequate resu l t s  are normally obtainable by describing the  
physical character is t ics  of a vehicle a t  a l l  points of discontinuity with the  
added constraint t h a t  The la t ter  constraint  i s  easily programed 
in to  the computer and obviates a large amount of repe t i t ive  input data over 
long constant sections.  I n  addition, where continuous but nevertheless rad ica l  
variations occur i n  the  input functions, addi t ional  s ta t ions  should be included 
t o  insure tha t  the  variations a re  adequately defined. 

Integrat ion i s  performed on a l l  

For t h i s  assumption t o  be acceptable, t he  

Ax = L/lOO. 

Frequency search technique.- The economy of the machine solution i s  i n t i -  
mately associated with the  i t e r a t i v e  technique employed t o  obtain the  unique 
frequencies tha t  w i l l  s a t i s fy  equation (37). Equation (37) i s  of the  form 

f ( w )  = 0 

and must be solved by t r i a l  and error .  

Successful r e su l t s  have been achieved by performing repeated t r i a l  solu- 
t ions  f o r  f ( w )  by systematically increasing the  frequency w by h u n t i l  a 
sign change i s  indicated, i .e. ,  

where fi i s  the  nth t r i a l  value. A t  t h i s  point,  a second-order (parabolic) 

curve fit i s  applied t o  points a t  f ( f l - l ) ,  f(&), and f ( & q  and the 
resul t ing analyt ical  expression can be solved f o r  w where f(u) = 0. This 
operation can be continued with each improved frequency u n t i l  the  difference 
between successive frequencies i s  l e s s  than some preassigned tolerance. 

Convergence can be hurried by good estimates of h fo r  the specif ic  
problem and refraining from a too stringent tolerance i n  frequency. 
ho 
i n  maintaining machine time within prac t ica l  l i m i t s .  

Increasing 
and the  frequency tolerance fo r  successive overtones i s  a l so  advantageous 
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Secondary Influences 

A principal  objective of the mathematical development of t h i s  paper w a s  t o  
provide a means f o r  including, a s  well as investigating, the e f f ec t s  of the sec- 
ondary contributions of shear deformation and rotary i n e r t i a  i n  modal analyses. 

Comparison with c l a s s i ca l  cases.- Studies have been made by comparing the  
c l a s s i ca l  or exact modal data f o r  uniform free-free beams without secondary 
e f f ec t s  with data obtained by the  subject recurrence technique with secondary 
e f fec ts .  The two methods, secondary e f f ec t s  being excluded, agreed t o  an accu- 
racy of greater  than 0.01 percent on the first three  mode frequencies, mode 
shapes, and nodal points.  It was fe l t  t h a t  t h i s  agreement qual i f ied the numer- 
i c a l  technique f o r  use i n  f'urther comparative studies.  

The sa l ien t  r e s u l t s  of some s tudies  t o  determine the  significance of shear 
Data and rotary i n e r t i a  on the c l a s s i c  uniform beam a re  furnished i n  f igure 1. 

were derived f o r  a so l id  cylin- 
d r i c a l  beam and fo r  a thin-wall 
cyl indrical  beam of a thiclazess- 
to-diameter r a t i o  of 0.015. 
Since the  effectiveness of shear 
deformation i s  dependent upon 
the r a t i o  of the shear modulus 
G t o  the bending modulus E,  
the  studies were made f o r  both 
fiber-glass and s t e e l  beams. It 
can be seen f romthe  curves f o r  
the s t e e l  beam, t h a t  f o r  e i the r  
of the cross sections the  com- 
bined secondary influences 
caused frequency reductions i n  
the f i r s t  three modes of not 
greater  than 5 percent when 
r a t io s  of length t o  diameter 
(L/D) a re  greater  than 20. 
frequency reduction compares 
with those reductions of up t o  
14 percent f o r  values of 
greater  than 20 f o r  fiber-glass 
beams. The value of G/E f o r  
t he  fiber-glass beam was 0.20 
whereas t h a t  f o r  the s t e e l  beam 
was 0.42. It i s  a l so  evident 
t h a t  the frequency reductions 
f o r  both the s t e e l  and f ibe r -  
glass  beams are  more pronounced 
f o r  the thin-wall cases than f o r  
the  so l id  beams. A s  the  asDect 

"his 

L/D 

Length-todiameter r a t i o ,  L/D 

- Thin-walled cylinder 
_ _ _ _  Solid cyl inder  

(uo Frequency without ro ta ry  

(u Frequency with r o t a r y  
i n e r t i a  or ahear deformation 

i n e r t i a  and shear deformation 

(a) Steel beam. 

Length-to-diameter r a t i o ,  L/D 

vehicle,  L D = 25 
0 Fourth s tage  space 

vehicle,  L/D = 5.0 

(b) Fiber-glass beam. 

Figure 1.- Effects of rotary inertia and 
shear deformation on the frequencies 
of free-free vibrations of uniform 
cylindrical beams. 

.. 
r a t i o  (L/D) decreases, the reduction i n  frequency becomes qui te  pronounced and 
reaches more than 50 percent i n  the  t h i r d  mode f o r  the thin-wall cases f o r  
aspect r a t i o s  of 4 and 7 f o r  the s t e e l  and fiber-glass beams, respectively.  



I n  reference 7, Kruszewski presented closed-form solutions f o r  the  uni- 
form beam with shear deformation and rotary i n e r t i a .  The report  gives general 
data for  readi ly  determining the  significances of t he  secondary influences f o r  
general beam cross sect ion and e l a s t i c  properties.  
obtained by the  numerical procedure of this paper were checked against  t he  data 
from the  closed-form solution of reference and were found t o  be i n  nearly 
perfect  agreement. 
as a sa t i s fac tory  and accurate procedure f o r  incorporating the secondary inf lu-  
ences i n t o  the  beam solution. 

The curves of figure 1 

This comparison fur ther  qua l i f i e s  the  numerical technique 

Effects on l a E c h  vehicle.- The six data points given i n  the fiber-glass 
curves of f igure 1 show the  frequency reductions due t o  secondary influences on 
a four-stage space vehicle  with 
vehicle with L/D = 5. 
and 26'percent of t he  fourth-stage length was f i b e r  glass .  
reveal reductions greater  than those predicted f o r  thin-wall steel beams but 
a r e  l e s s ,  a s  would be expected, than those f o r  thin-wall f iber-glass beams. 

L/D = 5 

L/D = 25 and the  fourth stage of a space 
O f  the  f i r s t - s t age  length 3.5 percent w a s  f i b e r  glass  

The f i r s t - s t age  data 

The fourth-stage frequencies f o r  were s igni f icant ly  reduced by 
the secondary e f f ec t s  and closely correspond t o  the  reductions predicted f o r  the 
thin-wall f iber-glass  beam. It appears t h a t  the  f i b e r  glass appreciably con- 
t r ibu ted  t o  the frequency reduction even though the  f ibe r  glass extended over 
only one-fourth of the  stage length. The f iber-glass  section extended over a 
span running from 0.23 t o  0.55 of the length which was a region subjected t o  a 
s ign i f icant  proportion of the shearing action. The specif ic  vehicle f o r  which 
these data were derived i s  documented fur ther  i n  the  section e n t i t l e d  
"NUMERICAL EXAMPLE. " 

Measure of significance.-  The aforementioned considerations suggest the 
usefulness of the  curves of f igure 1 i n  estimating the  probable significance of 
shear deformation and ro ta ry  i n e r t i a  i n  f ree-free na tura l  frequencies of launch 
vehicles. 
of including secondary influences i f  accurate analyses a re  desired on low-aspect 
r a t i o  s t ructures .  

Both the vehicle data and the curves c l ea r ly  indicate the necessity 

NUMERICAL EXAMPLE 

A n  example i s  presented of an application of the  recurrence solution t o  
Solutions have been pro- 

vided f o r  the f irst-  and 
fourth-stage configurations 

~ r s t - s t a g e  separa t ion  Second-stage s e r a r a t i o n  Third-stage separa t ion  of f l i g h t .  These two cases 
a re  submitted t o  show an 
ac tua l  numerical example 
derived from the subject 
method and t o  i l l u s t r a t e  
the varying importance of 
secondary e f fec ts  with the  
vehicle 's  length-to-diameter 

launch vehicle.  r a t i o .  The basic physical 

the  ac tua l  research vehicle i l l u s t r a t e d  i n  f igure 2. 

Figure 2.- Typical multistage research 
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characteristics of the vehicle required as input to the program have been 
recorded and submitted in table I. The tabulation provides input for both 
cases by taking the physical characteristics at as the first 
applicable quantities for the fourth-stage analysis. 

x = 619.83 

Frequency Data 

In table 11, the frequencies and percent reduction in frequencies are 
given for the first three modes of vibration for the two stages of the vehicle 
of figure 2. The data are displayed for analyses without the secondary effects, 
with both effects, with rotary inertia only, and with shear deformation only. 

Inspection of the data for the first stage will show only small effects of 

The maximum contribution of 
shear deformation and rotary inertia. The influences grow progressively with 
increasing modes as would be normally anticipated. 
rotary inertia and shear deformation is seen to be a reduction in frequency of 
slightly less than 5 percent on the third mode. The first-stage configuration 
has a length-to-diameter ratio of approximately 25. In the fourth-stage con- 
figuration with an aspect ratio of 5.0, the importance of rotary inertia and 
shear deformation are quite evident. The combined secondary influences produce 
a reduction of 58 percent in values computed without consideration of shear 
deformation and rotary inertia. The significance also increases with increasing 
modes. These results strongly suggest that for reliable frequency calculations 
on the upper stages of typical launch vehicles, consideration of the secondary 
contributions to flexure must be given. 

It is interesting to note, however, that good results would have been 
obtained in all cases shown by incorporating in the solution the effects of 
shear deformation only. The frequency error most affected by the secondary 
influence (third mode of the fourth stage) would be slightly less than 7 per- 
cent if shear deformation o n l y  had been considered. 

Elastic Curve Characteristics 

A graphical comparison of the modal functions for the first three natural 
modes for the first stage of the example vehicle would reveal only trivial 
departure from concurrency. However, it will be shown later that this is not 
the case for the fourth-stage configuration where the secondary effects have 
been shown to be appreciable. 

Mode shapes.- In figure 3 ,  the fourth-stage mode shapes 
for solutions with and without secondary effects. The comparison of mode 
shapes was accomplished by the application of the method of least squares. 
spite of the severe reductions noted in frequencies, the first three mode 
shapes retain similar graphical characteristics. 

5 are compared 

In 

Mode shape inflections near tips.- An interesting elastic curve character- 
istic should be noted that results from the inclusion of shear deformation. 
For beams with secondary effects, an inflection in the mode shape is frequently 
observed near one or both of the free ends and outboard of the outermost nodal 
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Figure 3 . -  Effects of rotary i n e r t i a  
and shear deformation on mode 
shapes of a low-aspect-ratio 
upper stage of a launch vehicle. 

t o  the  r igh t  of the inf lec t ion  point.  

point.  
th ree  modes of f igure 3 will indicate  
the  inf lec t ion  o r  reversal  i n  curva- 
t u r e  on t h e  right-hand end i n  the  
v i c i n i t y  of x = 90 inches. The 
in f l ec t ion  point occurs when the  sec- 
ond der ivat ive of t he  mode shape 
becomes zero. An expression is  
readily obtained by d i f f e ren t i a t ing  
equation (8) t h a t  indicates  the  
parameters involved i n  the phenomenon, 
t h a t  i s  

Inspection of e i the r  of t h e  

since 

a t  t he  in f l ec t ion  point,  and 

d25 
dx2 
- < o  

Then it follows from equation (63) t h a t  
f o r  the dip i n  the e l a s t i c  curve on the  end t o  occur 

d V 
d x K A G - d x  

Equation (64) simply s t a t e s  t h a t  when curvature contribution due t o  shear 
deformation i s  greater  than the  curvature contribution t o  the e l a s t i c  curve due 
t o  bending, the inf lec t ion  near the  t i p  w i l l  be evident. I n  elementary beam 
solutions,  shear deformation i s  not considered; t h i s  case corresponds t o  the  
l imit ing case where KAG a. It i s  then obvious from equation (64) t h a t  fo r  
cases where shear deformation i s  ignored, the shear deformation contribution t o  
curvature i s  zero and the conditions of equation (64) can never be realized. 

Mode slopes.- A pronounced departure between data computed with and with- 
out secondary e f f ec t s  i s  seen i n  the comparison of mode slopes i n  f igure  4. 
The so l id  curves a re  the slopes computed without shear deformation and ro ta ry  
ine r t i a .  The dashed curves were computed with secondary e f fec ts .  The slopes 
a re  compatible with the  amplitudes of t he  mode shapes given i n  f igure 3 a s  
established by the least-squares method. 
the  discont inui t ies  t h a t  a r e  evident i n  the data incorporating rotary i n e r t i a  
and shear deformation. The discont inui t ies  r e s u l t  from shear deformation and 
a re  not evident i n  results without shear deformation, whether including ro ta ry  
i n e r t i a  o r  not. 

The most conspicuous differences a re  

Accurate mode slopes frequently a r e  required i n  system 
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s t a b i l i t y  s tudies  of autopi lot  
s t ruc tu ra l  feedback. It i s  evident 
from f igure 4 tha t ,  f o r  accurate 
s t ruc tu ra l  feedback analyses on 
short  L/D configurations, the  sec- 
ondary e f fec ts ,  pa r t i cu la r ly  shear 
deformation, should be included i n  
developing the required mode slopes. 

Mode slopes compared with 
cross-section rotation.-  In elemen- 
t a r y  beam theory, which ignores both 
rotary iner t ia  and shear deforma- 
t ion ,  the cross-section ro ta t ion  i s  
quant i ta t ively the same as  the  
slope. The differences between the  
slope of the  e l a s t i c  curve 5 '  and 
the  cross-section rotat ion a r e  a 
fur ther  measure of the significance 
of secondary e f fec ts .  A comparison 
of these modal functions i s  shown 
graphically i n  f igure 5 f o r  the  
fourth stage of the  example vehicle. 
The observed differences between 
5 '  and Jr are  completely a 
r e su l t  of shear deformation and 
a r e  not evident i n  solutions 
ignoring shear. 

Load Character is t ics  

of Modes 

The moment and shear dis- 
t r ibu t ions  for the  fourth stage 
of the  example vehicle of f i g -  
ure 2 a re  submitted i n  f igures  6 
and 7. Comparative curves a re  
given f o r  data calculated with 
and without the secondary inf lu-  
ences of shear deformation and 
rotary ine r t i a .  The moment and 
shear values a re  compatible with 
the r e l a t ive  mode amplitudes shown 
i n  f igure 3 and a s  established 

-without rotary inertia and shear d e f u m t i o n  
_ _ _ _  With rot- inertia and shear defvrmation 

-.l L 

-.l 1 1 

20 40 60 80 100 

x, inches 

Figure 4.- Effects of rotary i n e r t i a  
and shear deformation on mode 
slopes of a low-aspect-ratio 
upper stage of a launch vehicle.  

5' __ Mode slope 
- - - -  - cross-section rotation 

-.1 ' 
0 20 40 60 80 100 

x, inches 

Figure 5.- Comparison of cross-section 
rotat ions and mode slopes of a low- 
aspect-ratio upper stage of a launch 
vehicle.  ( A l l  curves include the  
e f fec ts  of shear and rotary 
i n e r t i a .  ) 

by the  least-squares method of comparison. 
s ignif icant  differences with increasing modes between solutions with and with- 
out secondary influences, the magnitudes of the  differences increasing with 
increasing modes. An appreciable separation i n  the r igh t  nodal point of the  
t h i r d  mode moment curves i s  observed. The s t a r t l i n g  differences t h a t  a r e  
observed between amplitudes of the  comparative data f o r  the second and t h i r d  

Both the  moment and shear data  show 
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modes are principally attributed to the lower frequencies and consequently 
lower inertia loading on the beam for the solutions with secondary effects. 

Without rotarv i n e r t i a  and shear deformation . 4  __ 

Without rotary i n e r t i a  and shear deformation 
With rotary i n e r t i a  and shear deformation 

Second mode _ - - - _  

P 

4 . 

I I I I I 
0 20 40 60 80 100 

-2 

X. inches 

Figure 6.- Comparison of the  mode 
moments from solut ions with 
and without secondary e f fec ts  
f o r  a low-aspect-ratio upper 
stage of a launch vehicle. 

With rotary i n e r t i a  and shear deformation 
F i r s t  mode 

0 

-.2 

0 20 40 60 a3 100 

x, inches 

Figure 7.- Comparison of mode shears 
from solutions with and without 
secondary e f fec ts  f o r  a low- 
aspect-rat io  upper stage of a 
launch vehicle. 

CONCLUDING REMARKS 

A recurrence solution is presented that is especially suitable for 
obtaining highly descriptive modal data on severely discontinuous nonuniform 
beamlike structures; the solution includes the secondary influences of rotary 
inertia and shear deformation. Data are provided for helping the analyst in 
estimating the probable significance of shear deformation and rotary inertia 
in free-free natural frequencies of launch vehicles. 

Numerical examples of the solution are included for a first-stage and a 
fourth-stage configuration of a research vehicle. 
rotary inertia and shear deformation had trivial effects on the first-stage 
data, but were found to have very significant effects on the data for the 
fourth stage. 

The secondary influences of 

In most practical applications to launch vehicles, it is concluded that 
shear deformation is considerably more important than rotary inertia. 
able results could generally be obtained by including shear deformation only. 

Accept- 
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The authors' experiences indicate tha t ,  i n  general, f o r  most beam applica- 
t ions  the  secondary influences have the  least obvious effect  on the  mode shapes. 
An appreciable influence i s  noted i n  reducing frequencies and large e f fec ts  a re  
experienced on the mode shears and moments. 
i n  t he  mode slopes i s  a fur ther  influence resul t ing from the  consideration of 
shear deformation. 

The appearance of discontinuities 

The addition of shear deformation t o  elementary beam vibration theory can 
r e su l t  i n  an inf lec t ion  i n  the  mode shape outboard of the  outermost nodal 
points . 

Successful and economical solutions by the  subject method are intimately 
dependent upon de ta i l s  of t he  computing program. 
cussed on appropriateness of input data, superposition problems, numerical 
integration intervals ,  and frequency i t e r a t ion  routine. 

Some sa l ien t  points are dis- 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., April  9, 1965. 

35 



REZ'EIIENCES 

1. Den Hartog, J. P.:  Mechanical Vibrations. Third ed., McGraw-Hi11 Book Co. 
Inc., 1947, pp. 185-205. 

2. Scanlan, Robert H.; and Rosenbaum, Robert: Introduction t o  the  Study of 
The Macmillan Co., 1951, pp. 177-180. Aircraf t  Vibration and F lu t t e r .  

3 .  Alley, Vernon L.,  Jr.; and Gerringer, A. Harper: A Matrix Method f o r  the  
Determination of the Natural Vibrations of Free-Free Unsymmetrical Beams 
With Application t o  Launch Vehicles. NASA TN D-1247, 1962. 

4. Houbolt, John C.;  and Anderson, Roger A.: Calculation of Uncoupled Modes 
and Frequencies i n  Bending o r  Torsion of Nonuniform Beams. NACA TN 1522, 
1948. 

5 .  Spector, Joseph: In tegra l  Ser ies  Solution f o r  Uncoupled Vibrations of 
Nonuniform Bars. Master Appl. Mech. Thesis, Univ. of Virginia, 1932. 

6. Leonard, Robert W.: On Solutions for the  Transient Response of Beams. 
NASA TR R-21, 1959. (Supersedes NACA TN 4244.) 

7. Kruszewski, Edwin T.: Effect of Transverse Shear and Rotary Ine r t i a  on 
the  Natural Frequency of a Uniform Beam. NACA TN 1909, 1949. 



TABLE I.- PHYSICAL CHARACTERISTICS OF A MJLTISTAGE LAUNCH V M l C L E  

x, 
in. 

-34.35 
-19 35 
-19 - 35 
0 
17 - 85 
17 - 85 
19 * 35 
19 - 35 
20.85 
20.85 

71.65 
71.65 
204.85 
204.85 
206.35 
206.35 
207.85 
207.85 
209 - 95 
209 - 95 
211.45 
211.45 
212 * 95 
212 95 
217 * 95 
222.95 
227 * 95 
232 - 95 
236.35 
236.35 

237.85 
237.85 
239 - 35 
239 * 35 
245.25 
245.25 
246 - 75 
246 75 
248.25 
248.25 

257 * 85 
257 * 85 

258.75 
262.85 
262.85 

426.35 

258 75 

424.85 
424.85 

426.35 
427.85 

2,  
lb-sec2 

1.70 
1.70 
14.70 
14.70 
14.70 
14.70 
14.70 
13 - 59 
13.59 
13 * 59 

13 * 59 
6.61 
6.61 

6.61 

1.50 
1.50 
1.50 
1.50 

1.50 
.35 
.34 
.34 
.31  
0 20 
.12 
.05 
.Ob7 
.047 

,045 

6.61 

1.50 

1.40 
1 395 
1.395 
1.336 
1.336 

1.321 
1.316 
1.316 

1.200 
1.200 
1.200 
1.200 
1.200 

1.321 

.385 

.385 

.385 

.385 

1.090 
1.090 

m 
lb-secs/in.2 

0.01743 
.01743 
.06030 
.06030 
.06030 
.06030 
.06030 
.l3094 
.l3094 
.l3094 

.l3094 - 11350 
11350 

* 11350 
1-1350 
.00895 
.00895 
.00895 
.00895 
.00895 

.00895 

.00895 

.00895 

.00895 

.00895 

.00895 

.00895 

.om95 

.00895 . 00895 

.00895 

.01474 

.01474 

.01474 

.01474 

.01474 

.01474 

.01474 

.01474 

.01474 

.01474 
* 03673 
.03673 
.03673 
.03673 
.026668 
.026668 

.oil718 

.oil718 

.026668 

.026668 

E 1  , 
lb-in.2 

0.100 109 
.loo 

14.770 
14.770 
6.743 
6 * 743 
6.743 
6 * 743 
6.743 
34.59 

34.59 
34.59 
34.59 
8.352 
8 - 352 
8.352 
8 352 
94.92 
94.92 
6.914 

6.914 
6.914 
6.914 

13 * 900 
10.400 
8.000 
6.000 
3.200 
2.100 
1.403 

1.403 
1.403 
1.403 
4.000 

1.042 
1.042 
1.042 
1.042 

3 - 370 

3.361 

3.361 
3.361 
3.361 
4.910 
4.910 
4.910 
4.910 
1.665 
1.665 
1.665 
1.665 

10.00 x 106 

33.54 
33.54 
33.54 
33.54 
33.54 
59.34 
59.34 
59.34 

59.34 
59.34 
59.34 
59.34 
59.34 
209.00 
209.00 
209.00 
209.00 
209.00 

209.00 
26.46 
26.00 
26 .oo 
21.00 
17.00 
14.80 
13.60 
13.10 
13.10 

12.92 
31.85 
36.89 
36.89 
56.71 
56.71 
61.75 

61.75 

10.00 

61.75 

61.75 

61.75 
61.75 
61.75 
33.69 
33.69 
33.69 
33.69 
33.69 
33.69 
24.88 
24.88 
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TABLE I.- PHYSICAL CHARACTERISTICS OF A MULTISTAGE LAUNCH VEHICLE - Concluded 

427.85 
444.85 
444.85 
446.35 
446.35 
447.85 
447.85 
451.35 
451.35 
604.55 
604.55 

606.05 
606.05 
607.55 
607.55 
610.00 

618.35 
618.35 
619.85 
619.85 

621.35 
621.35 
640.95 
640 - 95 
642.45 
642.45 
643.95 
643.95 
647.45 
647.45 

614.00 

667.96 
667.96 

671.462 
672.962 
672.962 

698.45 
698.45 

699.76 
699.76 
701.26 
701.26 
702.76 
702.76 
712.65 
712.65 
716.95 

671.462 

674.462 
674.462 

~ 

z, 
lb- s ec2 
-~ ~~ 

1.090 
1.090 
1.090 
1.090 

.385 

.385 

.385 

.385 
385 

.385 

.385 

.385 

.084 

.091 

.091 

.io3 

.122 

.143 

.143 

.070 

.150 

.070 

.070 

.070 

.070 

.070 

.goo 

.goo 

.goo 

.goo 

.goo 

.goo 

.goo 

.goo 

.goo 

.goo 

.140 

.140 

.140 

.140 

.140 

.140 

.140 

.140 

.380 

.380 

.380 

.380 

.380 

.3& 
~~ 

m, 
lb-sec2/in. 

o .oil718 
.oil718 
.oil718 
.011718 
.03360 
-03360 
.03360 
.03360 
.026668 
.026668 
.026668 

.026668 

.00585 

.00585 

.00585 

.00585 

.00585 

.00585 

.00585 

.00585 

.00266 

E1 9 

lb-in.2 

3.025 X : 
3.025 
1.071 
1.071 
1.071 
1.071 
4.910 
4.910 
4.910 
4.910 

.5224 

.5224 

.5224 

.5224 
3.630 
4.080 

5.600 
4.810 

.893l 

.8931 

.8931 

-8931 
1.409 
1.409 

.2714 

.2714 

.2714 

.2714 

.3760 

.3760 

.3760 

- 3760 
.3760 
.3760 . mol4 
.20014 
.20014 
.20014 
.250 
.250 
.250 

.250 

.1364 

.1364 

.1364 

.I364 

.250 

.250 

.250 

.250 

LO9 

KAG, 
l b  

24.88 x 106 
24.88 
24.88 
24.88 
33.69 
33.69 
33.69 
33.69 
33.69 
33.69 
33.69 

33.69 
24.08 
24.61 
24.61 
25.48 
26.89 

28.96 
6.639 

6.639 
6.639 
6.639 
6.639 
6.639 
1.169 
1.169 
1.169 
1.169 
1.169 

1.169 
1.169 
1.169 
1.169 
1.169 
1.000 
1.000 
1.000 
1.000 
1.000 

1.000 
1.000 
1.000 

.500 

.500 

.500 

.500 

.5m 

.500 

28.43 
28.43 



T 
f 
4 
P 

Frequency, radians/sec 

TABU 11.- REDUCTION OF FKEE-FRFX NATURAL FREQUENCIES OF A MULTISTAGE RFSEARCH VEHICLE 

DUE TO ROTARY INERTIA AND SHEAR DEFORMllTION 

Reduction i n  frequency, percent 

Without rotary 
i n e r t i a  and 

shear deformation 

Mode 

- 

With rotary With rotary With rotary With shear 
i n e r t i a  and inertia only deformation only i n e r t i a  and 

shear deformation shear deformation 

With rotary 
i n e r t i a  only 

With shear 
deformation only 

16.017 16.054 16.083 0.64 0.41 

46.521 47 195 46.770 1.97 .55 I- 93.943 97.566 94.727 4.81 1.13 

1 16.120 

2 47.457 

3 98.686 

I 

Fourth stage of  multistage launch vehicle, aspect r a t i o  = 5.0 

0.23 

1.45 

4.01 

438.557 1 334.776 400.968 

1104.970 

1655.463 

1367.317 760.445 

2292.381 960.819 

348 945 23.66 

803.663 44.38 

1049.897 58.09 

8.57 

19.19 

27.78 

20.43 

41.22 

54.20 
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